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DE!I?ERMINATION OF LOADS ON A FLGCIBU LAUNCH VEHICLE 

DURING ASCENT THROUGH WINDS 

By Harold C. Lester and Dennis F. Collins 
Langley Research Center 

SUMMARY 

An ana ly t ica l  procedure i s  developed f o r  computing the  pi tch plane motions 
and bending moments experienced by a f l ex ib l e  launch vehicle during ascent 
through atmospheric winds. 
posi t ion of several  beam modes, and propellant slosh i s  t rea ted  by a mechanical 
analogy. Nonlinear, time-dependent equations of motion a re  derived by using a 
var ia t ional  procedure which i s  applicable t o  variable mass systems. 
i l l u s t r a t i v e  example, the  method is  applied t o  a typ ica l  launch vehicle and the  
responses computed numerically by means of an equivalent f i f th-order  integra- 
t ion .  
p rof i les  such as  those obtalned by the  smoke-trail technique. 

Structural  bending i s  approximated by the super- 

A s  an 

The method i s  par t icu lar ly  su i tab le  f o r  use with detai led wind velocity 

INTRODUCTION 

A s  a launch vehicle ascends through the  atmosphere, it experiences dis- 
turbing influences from many sources, among which are  winds, wind shears, and 
gusts.  The loads resul t ing from the  wind environment represent a major con- 
t r i bu t ion  t o  the  t o t a l  f l i g h t  loads. Satisfactory s t ruc tu ra l  design of a launch 
vehicle, therefore, requires t h a t  t he  system response t o  winds be f u l l y  under- 
stood i n  order t o  assure adequate s t ruc tu ra l  in tegr i ty .  

The prediction of launch-vehicle wind loads has usually been divided i n t o  
(1) the  rigid-body loads associated with winds and wind shears and two parts:  

(2) the  f l ex ib l e  body loads resul t ing from response t o  gusts.  With t h i s  approach, 
t h e  rigid-body loads are determined by f ly ing  t h e  r ig id  vehicle, described by 
equations with time-varying coefficients,  through synthet ic  o r  measured wind pro- 
f i l e s .  Typical of such methods are the  p i tch  plane analysis developed i n  refer-  
ence 1 and the  three-dimensional formulation, which includes wind d i rec t iona l i ty  
effects,  presented i n  references 2 and 3. The synthetic wind prof i les  developed 
i n  reference 4 are examples of the  inputs used i n  investigations of t h i s  type. 
Gust loads are estimated by analyzing the  perturbation motion about d i scre te  
points i n  the  boost t ra jec tory .  Fixed coeff ic ient  equations accounting f o r  t he  
s t ruc tu ra l  f l e x i b i l i t y  degrees of freedom ( fo r  example, ref. 5 )  and gust inputs 
i n  t h e  form of steps o r  sinusoids and ramps of d i f fe ren t  wavelengths are employed 
f o r  t h i s  purpose. 
body wind and wind-shear loads and gust loads. 

Design loads are determined by superposition of t he  rigid- 
Although such an approach can be 



j u s t i f i ed  on the  bas i s  of available measured wind data, improved wind-measurement 
techniques (ref. 6) indicate  a need f o r  a refined procedure. 

I n  t h i s  paper, an analyt ical  procedure i s  developed f o r  computing the  
motions and bending moments experienced by a f lex ib le  launch vehicle during 
ascent through an atmospheric wind f i e ld .  The procedure represents an exten- 
sion of t he  methods previously discussed i n  t h a t  the  e f fec ts  of s t ruc tura l  
bending, time-dependent coefficients,  and detai led wind inputs measured by the  
improved methods ( ref .  6) and representing the  combined influence of winds, 
wind shears, and gusts are  considered joint ly .  Pi tch plane motion i s  considered 
and referenced t o  a body-fixed Cartesian coordinate system. Structural  bending 
i s  represented by the  superposition of several  f ree-free beam modes and a simple 
spring-mass analogy i s  used t o  approximate propellant slosh. Nonlinear equa- 
t ions  of motion which have time-dependent coeff ic ients  are  derived by using a 
var ia t ional  procedure ( r e f .  7) which i s  applicable t o  variable mass systems. 
Both quasi-steady and slender-body momentum aerodynamic coefficients are  derived. 
The nonlinear equations of motion a re  solved numerically on a d i g i t a l  computer 
by means of an equivalent f i f th-order  integration using a fourth-order 
Runge-Kutta routine. 

The paper i s  divided in to  three major sections: Analysis, Computer 
Program, and Application and Results. 
equations a re  derived and the  complete s e t  of resul t ing equations are then sum- 
marized i n  an appendix. 
discussed i n  the  section "Computer Program." 
"Application and Results," the  method i s  applied t o  a representative launch 
vehicle and the  motions and bending moments computed f o r  f l i g h t  through a smoke- 
trail-derived wind velocity prof i le .  

I n  the  section "Analysis" the  governing 

Salient features of t h e  digi ta l  computer solution are 
A s  reported i n  the  section 

SYMBOLS 

cross-sectional area of th rus t  chamber ex i t  face, gimbaled and 
nongimbaled engines, respectively, sq f t  

A142 

"0 control system gain 

Te - qSoCA(M) assumed absolute a x i a l  acceleration t i m e  history,  
m t  ? 

f t /sec2 

C A W  axial-force coeff ic ient  

c%(x,M) d x ,  radian- 1 s," CN,(M) slope of normal-force coefficient,  

generalized bending-moment coefficient,  used with appropriate sub- 
sc r ip t  (see appendix D )  

cb 
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generalized aerodynamic coefficient associated with j t h  bending 
mode, used with appropriate subscript (see appendixes A and B )  

generalized pitching-moment coefficient, used with appropriate sub- 
sc r ip t  (see appendixes A and B) 

slope of pitching-moment coefficient, 

f t / radian 

Cn generalized aerodynamic coefficient,  used with appropriate sub- 
sc r ip t  ( see  appendixes A and B)  

c%( X, M) slope of l o c a l  normal-force coefficient,  l / f t - radian 

D diss ipat ion function, f t - l b  

distance from gimbal point t o  nozzle ex i t  plane, gimbaled and non- 
gimbaled engines, respectively, f t  

dl ,  d2 

E t o t a l  k ine t ic  energy, f t - l b  

Fa,+, Fa,y component of aerodynamic force i n  x- and y-direction, respectively, 
l b  

Fg, x, FGV component of gravi ty  force i n  x- and y-direction, respectively, l b  

component of propulsive force i n  x- and y-direction, respectively, 
l b  

FP,x, FP,Y 

FxPy component of a rb i t r a ry  force i n  x- and y-direction, respectively, lb 

Q 

HY R i n e r t i d  axes (see f i g .  1) 

gravi ta t ional  acceleration constant, f t  /s e c2 

h, r coordinates along i n e r t i a l  axes, denoting a l t i t ude  and range, 
respectively, f t  

m a s s  moment of i n e r t i a  of launch vehicle ( l e s s  engines) about center 1% 
of gravity, lb-sec2-ft 

m a s s  moment of i n e r t i a  of a l l  engines and gimbaled engine, respec- Ie, *eyl 

i Y  J modal indices 

t ively,  about gimbal point, lb-sec2-ft 

+++ 
i, j ,k un i t  vectors 
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Xc,I(r,Ko control system gains, sec, l/sec, and l/sec, respectively 

k propellant slosh index 

L length of launch vehicle, f t  

2(x,t), 21(x,t), l a t e r a l  aerodynamic, i ne r t i a l ,  and gravi ta t ional  loading, 
respectively, per  un i t  length, l b / f t  

2g(x, t 1 

Vm w 
VS 

M Mach number, 

aerodynamic pitching moment about center of gravity, f t - l b  Ma, cg 

bending moment at  s t a t ion  x = xb,.., f t - l b  %n 

a rb i t r a ry  pitching moment about center of gravity, f t - l b  Mcg 

propulsive pitching moment about center of gravity, f t - l b  MP 

m(x,t) launch-vehicle mass d is t r ibu t ion  per un i t  length, less  engines, 
lb-sec 2 

sq ft 

m a s s  d i s t r ibu t ion  per un i t  length, gimbaled and nongimbaled 
2 m(  7 1 ) 4 7 2 )  

lb -  sec engines, respectively, sq f t  

lb-sec 2 
mass of a l l  engines and gimbaled engine, respectively, 

f t  me, me, l  

2 
generalized mass associated with i t h  bending mode, lb-sec m i  f t  

2 lb-sec 
f t  propellant slosh m a s s ,  

J% 

m t  
2 

t o t a l  mass, launch vehicle plus engines, lb- sec 
f t  

exhaust pressure, gimbaled and nongimbaled engines, respectively, pe,l’ Pe,2 
lb / f t2  

atmospheric pressure at  a l t i t ude  h, l b / f t 2  PO 

generalized aerodynamic force associated with j t h  bending mode, l b  
Qj, a 
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generalized propulsive force associated with j t h  bending mode, l b  Qj,P 

generalized force associated with par t icu lar  degree of freedom p i  Q B i  

dynamic pressure, p V m , v  1 2 , lb/sq ft 9 

q i ( t )  generalized coordinate associated with i t h  bending mode, f t  

R' posit ion vector locating representative point on s t ruc tura l  center 
l i n e  re la t ive  t o  i n e r t i a l  (H,R) frame, f t  (see f ig .  1) 

4 posit ion vector locating center of gravi ty  of launch vehicle rela- 
t i v e  t o  or igin of i n e r t i a l  (H,R) frame, f t  (see f i g .  1) 

RO 

s ( x )  launch-vehicle cross-sectional area of revolution, sq f t  

m a s s  s t a t i c  unbalance of launch vehicle ( l e s s  engines) about center Scg 
of gravity, lb-sec2 

Se, Se,l mass s t a t i c  unbalance of all engines and gimbaled engine, respec- 
t ively,  about gimbal point, lb-sec2 

SO aerodynamic reference area, sq f t  

S Laplace transform variable, sec'l 

Te, Te, 1 t o t a l  th rus t  of a l l  engines and gimbaled engine, respectively, lb 

T,, T v , l  t o t a l  vacuum thrus t  of all engines and gimbaled engine, respec- 
t ively,  l b  

TZ gimbaled engine load torques, f t - l b  

t t i m e ,  sec 

U po ten t ia l  energy, f t - l b  

u x  x uni t  s tep function ( k- b,n) 

u(x , t )  e l a s t i c  displacement of s t ruc tu ra l  center l ine,  
i 

?k veloci ty  vector of par t icu lar  slosh m a s s ,  f t / s ec  

Vm center-of-gravity velocity of launch vehicle, f t / s ec  

5 



Vm, w velocity of launch vehicle r e l a t ive  t o  wind, f t / sec  

velocity vector of point on deformed s t ruc tura l  center l i n e  of 
launch vehicle, f t / sec  VP 

-+ 4 

V p , l ,  Vp,2 velocity vector of point on gimbaled and nongimbaled engines, 
respectively, f t / sec  

velocity of sound at a l t i t ude  h, f t / sec  

component of center-of-gravity velocity vector along X- and Y-axis, 
respectively, f t / sec  

wind velocity, f t / sec  

re la t ive  velocity of exhaust par t ic les  t o  thrus t  chamber e x i t  face, 
gimbaled and nongimbaled engines, respectively, f t / sec  

downwash, f t / sec  

mass-flow ra t e  through gimbaled and nongimbaled engines, respec- 
t ively,  lb-sec/ft  

body-fixed coordinate axes (see f i g .  1) 

coordinates along X and Y body axes, f t  

coordinate of bending-moment station, f t  

center-of -gravity location, f t  

propellant slosh mass location, f t  

coordinate locating angle-of-attack sensor, a t t i t ude  sensor, and 
at t i tude-rate  sensor, respectively, f t  

rigid-body angle of attack, 0 - 7, radians 

angle of attack measured by angle-of-attack sensor, radians 

wind-induced angle of attack, radians 

a rb i t ra ry  generalized coordinate 

fl ight-path angle - t h a t  is, angle velocity vector Tm makes with 
horizontal, radians 

gimbaled engine deflection angle (gimbal angle), radians 



6, gimbaled engine command function, radians I 

viscous dauqing r a t i o  of i t h  bending mode fi 

coordinate measured aft from gimbal point along gimbaled and non- 
gimbaled engines, respectively, f% v q2 

8 9 0 C  a t t i t ude  and a t t i t u d e  command angle, respectively, radians 

Of feedback angle, radians 

hk propellant slosh coordinate as measured from deformed s t ruc tura l  
center l ine,  f t  

control system gains, sec and dimensionless, respectively IJ.1’ IJ.2 

viscous damping r a t i o  associated with gimbaled engine 

. f i l t e r  constant 

‘e,1 

tf 

5k viscous damping r a t i o  associated with propellant slosh modes 

2 lb-see P atmospheric density at a l t i t ude  h, 
f t 4  

$ i < x >  displacement of i t h  mode 

Qk slosh frequency parameter, radians*/ft 

we gimbal ed-engine const ant, radians/ se  c 

natural  frequency of gimbaled engine, radians/sec e , l  w 

LDf f i l t e r  constant, radians/sec 

‘Di natural  frequency of i t h  bending mode, radians/sec 

% natural  frequency of propellant slosh spring-mass systems, 
radians/sec 

A dot over a variable indicates  d i f fe ren t ia t ion  with respect t o  time. 

A prime with a variable indicates  d i f fe reh t ia t ion  with respect t o  x. 
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An arrow over a variable indicates  a vector. 

A bar over a variable indicates a Laplace transformation. 

ANALYSIS 

I n  t h i s  sect ion the  dynamical equations governing the  planar motion of an 
ascending f l ex ib l e  launch vehicle a re  developed. The vehicle i s  considered t o  
be autopilot  controlled and subjected t o  the  disturbing influence of atmospheric 
winds. 

Mathematical Model 

General.- The coordinate system used herein i s  i l l u s t r a t e d  i n  f igure  1. 
Motion is  referenced t o  a Cartesian coordinate system (x,y) fixed i n  t h e  
undeformed r ig id  body and oriented with respect t o  the  f la t  ear th  horizontal  
by the  a t t i t ude  angle 0 .  Motion i s  constrained t o  the  p i tch  plane. The center- 
of-gravity velocity vector ?m i s  oriented t o  the  loca l  horizontal  by 7 ,  the  
fl ight-path angle. The e l a s t i c  displapement of the  vehicle structure,  r e l a t ive  
t o  the  undeformed center l i n e  (X-axis), i s  given by the  function which 
i s  discussed i n  the  following section. Propellant sloshing i s  simulated by 
spring mass systems. Control forces a re  produced by swiveling the  thrus t  cham- 
bers of a l l  o r  some of t he  rocket engines through an angle 6 i n  response t o  
commands provided by an autopi lot .  
guides it along a preprogramed f l i g h t  path. External disturbances a re  assumed 
t o  come from horizontal  winds whose r e l a t ion  t o  the  center-of-gravity veloci ty  
vector i s  shown i n  the  vector diagram of f igure 1. 

u ( x b t )  

The autopilot  s t ab i l i ze s  the vehicle and 

Bending modes.- Bending of a launch-vehicle s t ructure  i s  approximated by 
the  center-l ine def lect ion of an equivalent f ree-free beam with nonuniform mass 
and s t i f fnes s  properties.  It i s  assumed 
s i b l e  with the  superposition of a f i n i t e  

c u(x , t )  = 

i 

t h a t  adequate representation i s  pos- 
number of terms i n  the  ser ies  

where &(x)  represents the  free-free beam modes o r  eigenfunctions and q i ( t )  

represents the related generalized coordinates. The mode shapes $ i (x )  are 
functions solely of t he  mass and s t i f fnes s  properties exhibited at  a par t icu lar  
time i n  the t r a j ec to ry  and represent known input quant i t ies .  The generalized 
coordinates qi(  t )  
independent degrees of freedom. 

determine the contribution of each mode and, thus, represent 

Several methods ( fo r  example, re fs .  8 and 9 )  a re  available fo r  the  computa- 
t i o n  of the free-free bending modes. The derivation presented herein assumes 

8 



t h a t  the  bending modes a re  computed at several  d i scre te  times i n  the  ascent 
t ra jec tory  by using simple beam theory. The modes a re  thus orthogonal with 
respect t o  t h e  weighting function m(x,t), t h a t  is, running mass. Transverse 
shear and/or rotary i n e r t i a  e f fec ts  may be handled by including these second- 
order terms i n  the  eigenvalue problem and modifying the  generalized mass and 
orthogonality expressions accordingly (ref. 10). Bending modes a r e  computed 
with engine masses uncoupled (removed) from the  launch-vehicle s t ructure  and 
l iqu id  propellants, i f  any, assumed frozen. Dynamical e f f ec t s  of the  engine 
masses a r e  included through i n e r t i a l  coupling i n  the  equations of motion. 

Propellant slosh.- A spring-mass analogy i s  employed t o  simulate l i qu id  
propellant motion. 
11, and 12, f o r  example) f o r  a var ie ty  of tank configurations. Essentially, 
t he  sloshing l iqu id  i s  replaced by a spring-mounted mass which duplicates t h e  
resul tant  force exerted on t h e  tank by the  l iqu id  when the  fundamental slosh 
mode i s  excited at  i t s  resonant frequency. 
representation are: slosh mass %, natural  frequency %, and slosh mass 
locat ion q. 
t he  r a t i o  of f l u i d  depth t o  tank radius and may be evaluated Prom information 
available i n  the  previously c i ted  l i t e r a t u r e .  Viscosity, surface tension, 
and mechanical devices, such a s  baff les ,  provide sources of energy diss ipat ion 
i n  sloshing l iquids .  
f ac to r  Ek has been inser ted i n  each slosh degree of freedom. Approximate 
values of t h i s  parameter may be established on the  basis of information avai l -  
able i n  the  previously mentioned sources o r  from experimental investigations 
( f o r  example, re fs .  13 and 14). 

This analogy has been developed i n  t h e  l i t e r a t u r e  (refs. 1, 

The parameters required by t h i s  

These quant i t ies  a r e  functions of t h e  acceleration f i e l d  and 

For t h e  analysis herein, an equivalent viscous damping 

Method of Analysis 

The derivation of the  equations of motion i s  based on the  r e su l t s  of a 
var ia t ional  procedure ( r e f .  7) developed from momentum considerations. P a r t  
of the var ia t ional  principle,  as s ta ted  therein, i s  readi ly  recognized as 
having the  same form as Lagrange's equations and it w i l l  be these operations 
t h a t  a r e  presented i n  t h i s  section. 
of Lagrange's equations i s  based on the assumption of constant mass, no such 
requirement i s  imposed on the operations implied by the  var ia t iona l  pr inciple  
presented i n  reference 7. Hereafter, t h e  term "Lagrange's equations" w i l l  be 
interpreted as having the  same meaning as established i n  the  context of refer-  
erence 7. 
yields  equivalent generalized force terms (appendix C )  which account f o r  the 
d is t r ibu ted  loading exerted on a launch-vehicle s t ructure  by the  in te rna l  
momentum f lux  of the flowing propellants.  
grated, yields  the  pr inciple  th rus t  terms and addi t ional  contributions which 
account f o r  t he  dynamic coupling of the propellant flow. 
appendix C, these e f f ec t s  a r e  excluded from the  equations of motion. 

However, whereas the  c lass ica l  derivation 

I n  addition, it should be noted t h a t  the var ia t ional  pr inciple  c i ted 

The d is t r ibu ted  loading, when in te -  

Although t rea ted  i n  

Lagrange's equations.- A general form of Lagrange's equations su i tab le  f o r  
variable m a s s  systems and expressed i n  the c l a s s i ca l  form, t h a t  is, referenced 
t o  an i n e r t i a l  (space-fixed) frame has been developed i n  reference 7. For the 
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analysis presented herein, it is  convenient t o  reference t h e  motion of t he  
launch vehicle t o  t h e  rotat ing frame (X,Y) i l l u s t r a t e d  in figure 1. 
c la s s i ca l  expression of Lagrange's equations must therefore  be transformed t o  a 
form which is  va l id  i n  t h e  rotat ing coordinate system. Details of t h e  transfor- 
mation may be obtained from references 15 and 16. (A similar, but less general, 
form i s  summarized i n  r e f .  17.) When transformed; Lagrange's equations f o r  the  
rigid-body degrees of freedom ( t rans la t ion  and p i t ch )  assume the following 
f oms : 

The 

- 1 Fy d aE a E .  -- + e - + COS e - - 
d t  aVy aVX ah 

where U has been assumed independent of r. 

Lagrange's equations f o r  the remaining degrees of freedom (bending, pro- 
pel lant  slosh, and gimbaled engine) remain unchanged when transformed and have 
t h e  form 

where p i  
sipation function D has been added. 

represents a par t icu lar  coordinate (degree of freedom), and a dis-  

Kinetic energy.- The derivation i s  i n i t i a t e d  by writ ing the  t o t a l  k ine t ic  
energy of the  system. It i s  assumed t h a t  the m a s s  of the  vehicle i s  dis t r ibuted 
along the s t ruc tu ra l  center l i ne .  
i l l u s t r a t e d  i n  f i g .  l), the  posit ion vector locat ing a point on the s t ruc tu ra l  
center l i n e  r e l a t ive  t o  the  or igin of t he  i n e r t i a l  frame (H,R) i s  given by 

From coordinate system considerations ( a s  

where gi(x)  represents t he  orthogonal f ree-free mode shapes and qi( t )  repre- 
sents  t h e  associated generalized coordinates. The vector Roy expressed i n  
space-fixed components, locates  the  center of grav i ty  of the  launch vehicle 
relative t o  the  i n e r t i a l  origin.  

+ 

Perturbations of t h e  center of gravi ty  normal 
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I 

t o  t h e  vehicle center l i n e  resulting from displacements of t h e  structure,  
engines, and propellant slosh masses are neglected. 

The absolute velocity vector Tp of a point on the  s t ruc tura l  center l i n e  
may be determined by different ia t ing the  posit ion vector 
axes (X,Y) rotate,  t h i s  d i f fe ren t ia t ing  must account f o r  the time r a t e  of change 
of the  direct ion of t he  uni t  vectors ? and 7. Differentiating d and noting 
tha t  

-+ 
R. Since the  body 

4 
produces the following equation f o r  the  velocity vector Vp: 

If t h e  absolute veloci ty  vector $o 
resolved in to  components along the  body-fixed (X,Y) axes, tha t  is, 

of the  center of gravity i s  instantaneously 

I ,+  Ro = i V x  + 3y 
the vector qP may be expressed i n  the  following form: 

r 7 

With the assumption of small engine ro ta t ion  angles and e l a s t i c  deforma- 
t ions,  t he  absolute velocity vector TP,1 
gimbaled engine may be determined i n  a s imilar  manner and is  given by the  
following equation: 

of a representative point on the  



The veloci ty  vector TPy2 f o r  a point on the  center l i n e  of t he  nongimbaled 
engine may be obtained from equation ( 5 )  simply by nulling t h e  gimbaled engine 
deflection angle (6 = 0) and i s  given as follows: 

+ 
I n  addition, t he  absolute veloci ty  vector vk 
is  required and i s  given as follows: 

of a representative slosh mass 

With the  use of equations (4)  t o  (7 )y  t he  t o t a l  k ine t ic  energy of the  configura- 
t i o n  may be formulated as 

f 

It i s  convenient 
occur frequently 
established: 

t o  define cer ta in  in tegra l  forms and combinations thereof which 
i n  the  ensuing development. The following def ini t ions are 

12 



m t  = s,” m(x,t) d~ +me ( 9 4  

Potent ia l  enere;y_and_-dj_ssipation function.- If engine rotat ion angles and 
e l a s t i c  deformations are assumed s m a l l ,  as w a s  done previously, the potent ia l  
energy of t he  system may be wri t ten as f o l l o w s :  



The first three terms i n  equation (10) represent, respectively, the deforma- 
t i o n a l  s t r a i n  energy (refs. 5, 8, and 10) of t h e  structure,  t h e  s t r a i n  energy 
of t h e  propellant slosh spring mass systems, and t h e  s t r a i n  energy of t he  
gimbaled engine backup s t ructure  and positioning actuator.  
t he  expression f o r  U define the  gravi ta t ional  potent ia l .  With the  use of 
equations (g), t he  potent ia l  

Remaining terms i n  

U may be reduced t o  t h e  following form: 

It is  convenient t o  account f o r  t he  diss ipat ive (damping) forces through a 
velocity dependent potent ia l .  (See ref.  18. ) The diss ipat ion function D 
f o r  the  system i s  assumed i n  the  following form: 

Structural  damping, as represented by the  first term i n  equation (12), is  
t rea ted  as an equivalent viscous type ( r e f s .  1 and 5 )  and i s  ju s t i f i ed  on the 
basis  t ha t  t h e  s t ruc tu ra l  modes are l i g h t l y  damped with l i t t l e  diss ipat ive 
cross-coupling. The second term i n  equation (12) gives the  propellant slosh 
damping forces, as discussed previously. Dissipative e f fec ts  associated with 
t h e  gimbaled engine backup s t ructure  and positioning actuator are, likewise, 
t rea ted  as an equivalent viscous type. 

Equations of Motion 

The equations of motion are  derived by means of a modified form of 
Lagrange ‘ s  equations (eqs. (2 )  and ( 3 ) ) .  Application of t he  equations is 
i l l u s t r a t e d  by a detai led derivation of t h e  equation governing motion along 
the  X bow axis.  Equations f o r  t he  remaining degrees of freedom may be 
obtained i n  a similar manner and are  merely s ta ted  after dropping negligible 
terms. 
are developed i n  subsequent sections. 
appendix E. 

The control system equations and expressions f o r  the applied forces 
The equations a re  summarized i n  
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Axial motion equation.- The d i f f e r e n t i a l  equation governing motion of t he  
X body axis  may be obtained from the  application of launch vehicle along the  

equation (2a).  
der ivat ive of t h e  k ine t i c  energy E with respect t o  the  veloci ty  V,; t h a t  is, 

The first term i n  equation (2a) requires determining the  p a r t i a l  

From equations (4), ( 5 ) ,  and (6) the  p a r t i a l  derivatives 

may be obtained and when subst i tuted i n t o  equation (13) produce the  following 
equation: 

When the  previously established def in i t ions  given by equations ( 9 )  are  
used, t he  integrat ions can be performed and the  expression f o r  aE/aVx reduced 
t o  the  following form: 



Lagrange’s equation (eq. (2a ) )  a l so  requires t h e  first time derivative of equa- 
t i o n  (1.5). I n  carrying out t h i s  operation, it should be noted tha t  the  analyt- 
i c a l  foundation f o r  t he  propellant slosh analogy requires t h a t  the  parameters 
mk, q, Xk, and ek be t rea ted  as quasi-steady functions. Differentiating 
equation (15) with respect t o  time produces the  following equation: 

I n  a similar manner the  p a r t i a l  derivative of the  k ine t ic  energy with respect 
t o  the  velocity Vy may be obtained as follows: 

Finally, the  p a r t i a l  derivative of the  poten t ia l  U (eq. (11)) with respect t o  
the  a l t i t ude  h produces the  gravity force as follows: 

aU - = mtg 
ah 

.. 
I n  order t o  simplify the equations, a l l  t r i p l e  product combinations of  6 ,  8 ,  

and zero, f i r s t ,  and second order time derivatives of 6, 1 $i(o> q i ( t ) ,  
i 

and 1 &(O) q i ( t )  are  eliminated from the  f i n a l  equations. Substi tuting 
i 
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equations (16), (17), and (18) i n t o  equation (2a) produces t h e  following equa- 
t i o n  governing motion along t h e  X body axis:  

where the  right-hand side, t h a t  is, 1 Fx, represents the  summation of the  

x-components of a l l  the  applied forces not accounted f o r  i n  the  poten t ia l  U. 

It should be noted t h a t  the consti tuents of the  term 1 F, account f o r  the 

aerodynamic and propulsive forces and are  discussed i n  a subsequent section. 

Lateral  motion equation.- With the use of equation (a), the  equation 
governing motionalong the  Y body axis i s  obtained as 

where the  term 1 Fy represents the  summation of the y-components of all the  

applied forces not accounted f o r  i n  the  poten t ia l  U. 

Pitch equation.- Finally, t he  remaining rigid-body equation representing 
pitching motion of t he  launch vehicle about i t s  center of gravity i s  obtained 
by using equation (2c) and i s  

(Equation continued on next page) 



The quantity 1 Mcg represents t he  summation of t he  moments of the  applied 

forces about t he  center of gravity.  

Bending mode eqbation.- The equation of motion f o r  the  j t h  bending mode i s  
determined by replacing p i  i n  equation ( 3 )  by the  coordinate qj, t h a t  is, 

where j assumes the  successive values 1, 2, 3, . . . up t o  the  number of terms 

employed i n  the  se r i e s  

i 
t ions  ( 9 )  and neglecting the higher order terms, as w a s  done previously, gives 
the  j t h  bending mode equation i n  the  following form: 

&(x) q i ( t )  (eq. (1)). Using the  r e su l t s  of equa- c 
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The generalized force 

developed i n  a subsequent section. 

associated w i t h  the  j t h  bending mode w i l l  be 

Prope&&nt slosh equation. - The propellant slosh equation is  determined 
s imilar ly  from equation ( 3 )  by replacing p i  with the  coordinate hk. Since 
the  slosh masses a re  excited solely by dynamic coupling and not by any external 
sources, the  r e su l t s  are equated t o  zero. 
performed, the equation of motion f o r  the  propellant slosh coordinate 
reduces t o  

When the  Indicated operations are 
hk 

where k assumes the  successive values 1, 2, 3,  . . . 
independent slosh degrees of freedom u t i l i zed .  

Gimbaled - - ~- engine equation.- The equation of motion 
is  obtained by replacing p i  i n  equation ( 3 )  w i t h  the  

where the load  torques T2 a re  given by the  following 

f o r  t he  gimbaled engine 
coordinate 

Q-6 + T2 

equation: 

6 :  

( 2 5 )  

The generalized force, o r  control torque, Q6 i s  discussed i n  the  section 
en t i t l ed  "Gimbaled Engine Commands .I1 

Control Equations 

Feedback considerations.- The general mathematical description of a 
launch-vehicle cont ro l  system is  not attempted due t o  the wide var ie ty  pres- 
en t ly  employed. 
t o  the  loop is  a p i tch  command 
during flight. 
(1) an a t t i t u d e  sensor located at  coordinate %,. (2) an a t t i t u d e  r a t e  sensor 
located at  coordinate 
at coordinate xa. These instruments not only sense the  r ig id  motion, but i n  
addition, due t o  f lexing of t he  vehicle 's  s t ruc ture  respond t o  l o c a l  changes i n  

A t yp ica l  control system is  shown i n  f igure 2. The input 
e C  w h i c h  serves as an a t t i t u d e  reference 

These are: Three types of control sensors are indicated.  

G, and ( 3 )  an angle-of-attack measuring device located 

.. . ._ . . 



t h e  slope and displacement of the  s t ruc tura l  center l i ne .  
feedback s ignal  
"the s t ruc tura l  feedback" and i s  associated with many s t ruc tura l  dynamic prob- 
lems i n  launch vehicles. 

That par t  of t h e  
8f proportional t o  loca l  bending motion i s  commonly termed 

Transforming from the  frequency plane t o  the  t i m e  domain, t h e  feedback 
equation may be wri t ten as 

where the loca l  measured angle of attack 

- 7 

i s  given by the  following equation: 

sent the s t ruc tura l  feedback. 

A f i l t e r -ampl i f ie r  network i s  included i n  the  forward loop of t h e  control 
system f o r  compensation. 
steady-state errors .  

I n  pa ra l l e l  with the  f i l t e r  i s  an integrator  t o  reduce 
The f i l t e r  equations may be writ ten as follows: 

Gimbaled engine commands.- The gimbaled th rus t  chamber o r  engine is  posi- 
Gener- tioned by an actuator i n  response t o  commands from the  control system. 

ally,  the  positioning actuator i s  some so r t  of electrohydraulic system which 
exhibits a nonlinear response f o r  small amplitude osci l la t ions.  
t he  type of nonl inear i t ies  involved - gimbal coulomb f r i c t i o n  and f lu id  flow 
and compressibility effects,  f o r  example - are amenable t o  analysis by l inear- 
izat ion processes such as the  describing f'unction method. Reference 20 i s  
such an analysis and indicates t h a t  t he  generalized force, or applied correc- 
t i v e  torque, exerted on t h e  engine by t h e  actuator may be expressed i n  the  
following form: 

However, 

t 
QS = I e , 1  K c m2 e L t ( 6 c  - 6 )  d t  + KO TI d t  
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where the commanded engine a t t i t u d e  i s  
Tz 
assumes t h a t  the  actuator  does not exert  a moment on the  s t ructure .  Combining 
t h e  r e su l t s  of equation (30) with the  previous r e su l t s  of equation (25) produces 
the  following l i n e a r  equation governing motion of t he  gimbaled engine. 

BC ( f ig .  3 )  and t h e  engine load torques 
a r e  given by equation (26). It should be noted t h a t  equation (30) impl ic i t ly  

Equation (31) characterizes the  engine response as 
osc i l la tory  component plus a l ag  and i n  t h i s  sense 

have been interpreted as  the viscous damping e , l  0 

consisting of a second-order 
the parameters 5e,l and 

and natural  frequency of the  
idealized system. I n  rea l i ty ,  however, these paramters, as  w e l l  as Kc and KO, 
are  determined from a describing function analysis of t he  nonlinear actuator.  
Other forms of the  control torque 

of sophistication required and upon the  character is t ics  of the par t icu lar  sys- 
tem being investigated; examples may be found i n  the  l i t e r a t u r e .  (See, f o r  
example, re fs .  1, 5 ,  10, and 12.)  

% may be used depending upon the degree 

I n  addition, a torque i s  exerted on the  thrus t  chamber by v i r tue  of i t s  
motion and the  mass flow of the  exhaust gases. An expression f o r  t h i s  torque, 
which may be categorized as a j e t  damping effect ,  i s  developed i n  appendix C 
(eq. (Cl7) ); however, i t s  contribution i n  equation (31) i s  neglected. 

Forces Acting on the Launch Vehicle 

Propulsive forces.- Equations f o r  the propulsive forces and moments asso- 
ciated with a launch vehicle employing a s ingle  gimbaled thrust  chamber, a re  
derived i n  appendix C. The propulsive forces evolve from a consideration of 
the  in t e rna l  momentum f lux  which yields  a d i s t r ibu ted  loading proportional t o  
the  loca l  propellant m a s s  flow (eqs. ( C l )  t o  (Cg) ) .  The d is t r ibu ted  loading, 
when integrated, y ie lds  the  pr inciple  propulsive forces and moments and addi- 
t i o n a l  terms which account f o r  t he  integrated e f fec t  of t he  in t e rna l  propellant 
m a s s  t ransfer .  

The r e su l t s  presented i n  appendix C are  eas i ly  amended t o  handle the  s i tua-  
t i o n  of both gimbaled and nongimbaled engines. I n  the  ensuing development, 
parameters associated with the  gimbaled engine a r e  denoted by t h e  subscript 
whereas parameters associated with t h e  nongimbaled engine a re  denoted by the  
subscript 2. Parameters common t o  both engines appear without a numerical sub- 
sc r ip t .  The following def ini t ions a re  used: 

1, 
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where Tv, l  and Tv represent the rated vacuum th rus t  of the  gimbaled engine 
and a l l  engines, respectively, and are  defined by t h e  following two equations: 

It should be noted t h a t  I&., wl, and w2 are negative quant i t ies .  

U s i n g  t he  r e su l t s  of equations (32) and (33) and retaining only t h e  princi-  
p l e  t h rus t  terms and the  mass-flow-rate terms which cancel with similar terms i n  
equation (lg), the  component of the propulsive force along the  
may be approximated on the  basis of equation (C7) .  

X body axis  

I n  a s imilar  manner the  remaining propulsive forces and moments may be con- 
s t ructed and are  l i s t e d  as  follows: 

1 
Fp,y = -Teyl' + 'e 1 d p ,  q i ( t )  + $ J y  

Aerodynamic forces.- Two methods f o r  approximating the l i f t  d i s t r ibu t ion  
on a slender deforming body are  summarized herein. 
theory, as developed i n  appendix A, provides both a steady and unsteady contri-  
bution t o  the  aerodynamic loading but does not include Mach number e f fec ts .  
The quasi-steady method i s  discussed i n  appendix B. 
steady-state l i f t  d i s t r ibu t ions  determined e i the r  experimentally o r  analyt ical ly .  
Hence, quasi-steady aerodynamic forces a re  Mach number dependent but only approx- 
imate the  unsteady effects .  
on these and other methods f o r  predicting aerodynamic forces.  

Slender-body momentum 

This method makes use of 

References 1 and 19 contain addi t ional  information 

Using e i the r  method, the  aerodynamic forces and moments may be expressed i n  
t h e  form (appendixes A and B) 
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where a = 0 - 7. An expression f o r  t he  wind-induced angle of a t tack a, i s  
derived i n  the  following section. The generalized aerodynamic coeff ic ients  
required i n  equations (36 ) ,  (37 ) ,  and (38) are  derived i n  the  appendixes c i ted.  

The axial aerodynamic force o r  drag may be approximated by the  expression 

Fa, x = -qSoCA(M) (39) 

where the coefficient CA i s  a function of Mach number. 

Wind inputs.- Atmospheric winds contribute t o  the  induced aerodynamic 
loading through two parameters: 
dynamic pressure q i s  given by the  equation 

dynamic pressure and angle of a t tack.  The 

1 2  
= p v m , w  

where Vm,, i s  the  veloci ty  of t he  launch vehicle r e l a t ive  t o  t h e  wind. I n  
the present analysis penetration e f fec ts  a re  neglected and Vm,w and + are  

From the  vector diagram i l l u s t r a t e d  i n  f igure 1, the  quantity 

expressed as follows i n  terms of the  center-of-gravity velocity, wind velocity, 
and the f l ight-path angle, by using the  l a w  of cosines: 

defined at  the  gravity center, t h a t  is, Vm,w = V,,,(xcg,t) and a, = %(xcgt)* 
Vm,w may be 

The magnitude of t he  center-of-gravity velocity 
lowing equation: 

vm = {- 

vector i s  given by the fo l -  

(42) 



and, i n  a similar manner, an expression f o r  t he  rigid-body angle of a t tack a 
may be derived. 

Again from figure 1, the  wind-induced angle of a t tack % may be determined 
by equating the  components of Vm,, and Vw which a re  perpendicular t o  V, 
and i s  given by the  following equation: 

+ + + 

Wind velocity and atmospheric density, pressure, and the  velocity of sound vary 
with a l t i t ude .  The equation re la t ing  a l t i t u d e  t o  time i s  

I n  a similar manner 
i n e r t i a l  axis  ( f i g .  

the range, o r  distance t raveled along the  horizontal  
l), is  given by the  following equation: 

r t  

A summary of equations i s  presented i n  appendix E. 

COMPUTER PROGRAM 

General 

The launch-vehicle wind-response equations were programed f o r  solution o.n 
This section is  devoted t o  a br ief  description a high-speed d i g i t a l  computer. 

of the  computer routine, i t s  features  and scope. 
t he  program as general as possible i n  order t o  accommodate a var ie ty  of vehi- 
cles.  
l a n t  slosh degrees of freedom. Linear aerodynamic coeff ic ients  obtained by 
e i the r  momentum theory or  the  quasi-steady method may be used. 

An e f fo r t  w a s  made t o  keep 

The program has provisions f o r  as many as three bending and two propel- 

Time-dependent input parameters were approximated by using tabulated data  
and a l i n e a r  interpolat ion subroutine. 
sideration, t ab l e  s izes  of 10 t o  30 discre te  time values were found t o  render 
sa t i s fac tory  l i n e a r  approximations of t h e  time varying parameters. 
coefficient w a s  defined by a Mach number table of s i ze  40, t h a t  is, 
specified at  40 d iscre te  Mach number conditions. 

For the  type of vehicles under con- 

The drag 
CA 

I n  order t o  accommodate 
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detai led wind inputs, the  wind velocity Vw w a s  defined by an a l t i t ude  tab le  
of s ize  1000. 
input 
may be compressed i n  cer ta in  a l t i t ude  intervals  and expanded i n  others t o  
provide maximum def ini t ion.  

For example, with an a l t i t ude  cei l ing of 60,000 f e e t  the  wind 
may be defined about every 60 feet of a l t i tude  although the  tab le  Vw 

Propellant Slosh Considerations 

Propellant sloshing, as previously discussed, w a s  simulated with spring 
mass systems. The slosh parameters (mk, Ek, and xk) required by t h i s  
analogy may be determined e i t h e r  from analyt ical  studies or experimental data. 
The c i rcu lar  slosh frequency q w a s  programed, however, t o  account f o r  i t s  
dependence on the  loca l  axial acceleration f i e ld .  
u t i l i zed  i n  t h e  computer program t o  generate slosh frequency: 

The following equation w a s  

where 
erat ion t i m e  history.  The parameter .f$ i s  a function of  tank geometry and 
f l u i d  depth and may be evaluated from information presented i n  the l i t e r a tu re .  
(See, for example, re fs .  1, 11, and 12.)  

ax i s  an assumed (based on a nominal t ra jectory)  absolute ax ia l  accel- 

Aerodynamic Considerations 

Reference t o  appendix B reveals t h a t  t he  integrands i n  the  quasi-steady 
aerodynamic coefficients are  functions of Mach number M and t h a t  these inte-  
grations should be performed i n  pa ra l l e l  with the  solution o f  t h e  equations 
of motion. Such a procedure is unnecessary since the  Mach number t i m e  his-  
to ry  f o r  a wind-disturbed ascent var ies  l i t t l e  from t h a t  computed f o r  a drag 
inclusive pa r t i c l e  t ra jectory.  Thus, i f  quasi-steady aerodynamics a re  used, 
t h e  program requires t h a t  a Mach number t i m e  relationship be determined o r  
assumed so tha t  t he  associated integrations required i n  the  l i n e a r  aerodynamic 
coefficients may be computed externally. Atmospheric density p, pressure po, 
and velocity of sound Vs were obtained from a standard atmosphere. (See 
ref. 21.) 

Bending Moments 

The dis t r ibuted loading exerted on the  s t ructure  of a launch vehicle may 
be integrated t o  yield bending-moment time h is tor ies .  Such a procedure has been 
followed i n  appendix D i n  order t o  obtain an equation f o r  t he  bending moments 
(eq. (D8)). Provision w a s  included i n  t h e  computer program fo r  up t o  5 bending- 
moment s ta t ions  ( 5  t i m e  h i s to r i e s ) .  
submitted i n  a t i m e  table .  
be used. For t he  l a t t e r  si tuation, t h e  aerodynamic integrals  (appendix D )  are 

Integrals  required i n  equation (D8)  are 
Either momentum o r  quasi-steady aerodynamics may 
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computed externally by means of an assumed Mach number time 
cussed i n  the  preceding section. 

Integration Technique 

Integrat ion of the nonlinear, time-dependent different  

his tory as dis-  

al equations w a s  
accomplished through t h e  application of an equivalent f if th-order integrat ion 
by means of a fourth-order Runge-Kutta routine. Sal ient  features of the  numer- 
i c a l  integrat ion scheme are discussed i n  t h i s  section. 
t h a t  is, the  ve loc i t ies  and displacements, were cumputed f o r  both a whole and 
two half  in te rva ls  and the  r e su l t s  compared t o  es tab l i sh  whether t he  computing 
in t e rva l  should be halved, doubled, o r  remain unchanged. Furthermore, on the 
bas is  of the  difference between the  whole and two half increment computations, 
t he  l a t t e r  w a s  improved by a correction procedure known as extrapolation t o  
zero in t e rva l  s i z e  (see the  discussion en t i t l ed  "Deferred Approach t o  the  L i m i t ,  
r e f .  22). The correction f ac to r  AZ i s  given by the  equation 

The dependent variables, 

Az = &(z* - zl) 

where Z 1  
i n t e rva l  and Z2 i s  the  same variable established using two half  intervals .  
The correction f ac to r  42 i s  added algebraically t o  Z2 i n  order t o  obtain 
the  equivalent f i f th-order  approximation of the  dependent variable.  

i s  a pa r t i cu la r  dependent variable computed on the basis of a whole 

The computing in t e rva l  adjustment c r i t e r i a  w a s  based on the  r e l a t ive  error .  
The following approximation of t h e  r e l a t ive  e r ro r  w a s  used i n  the  integrat ion 
routine: 

Iz2 - Z l l  Relative e r ror  = 
15 1221 

(49) 

Computing In te rva l  Adjustment Cr i te r ia  

(1) If the  r e l a t ive  e r ro r  i s  greater  than i t s  respective maximum allowable 
e r ro r  the computing in t e rva l  i s  halved and the  calculation repeated. 

(2)  If the  r e l a t ive  e r ro r  i s  l e s s  than 1 percent of i t s  maximum allowable 
e r ro r  t he  computation i s  accepted, but t he  in t e rva l  i s  doubled f o r  the next 
computation. 

( 3 )  If nei ther  conditions (1) or (2)  are s a t i s f i e d  the computing in t e rva l  
remains unchanged. 

10-5 halving w i l l  not be i n i t i a t e d  as a r e su l t  of t h i s  variable sat isfying 
condition (1) nor w i l l  doubling be allowed i f  all other variables s a t i s f y  
condition (2).  

(4 )  If the  absolute value of a par t icu lar  dependent variable i s  less than 
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( 5 )  Halving c r i t e r i a  f o r  any one dependent variable requires halving f o r  
all, but all variables must s a t i s fy  the doubling c r i t e r i a  before the  computing 
in t e rva l  i s  doubled. 

A m a x i m u m  allowable e r ro r  of was employed i n  the program f o r  all 
dependent variables and the  "read-in" or i n i t i a l  computing in te rva l  was se t  at  
10-3 seconds. P a r t i a l  double precision in t e rna l  addition ( r e f .  23) was used 
t o  minimize round-off error .  Since the  equations a re  l i nea r ly  cross-coupled 
through the  accelerations, a matrix inversion w a s  employed t o  determine the 
acceleration values. 

APPLICATION AND RESULTS 

Configuration 

I n  order t o  i l l u s t r a t e  the  procedure, t he  response of a typ ica l  launch 
vehicle w a s  computed. A preliminary design configuration of a booster system, 
which has a thrust-weight r a t i o  of approximately 1.25 a t  launch, was chosen as 
the example launch vehicle. 

Mass _ -  and s t i f fnes s  properties.-  Structural  deformation of the vehicle 's  
center l i n e  w a s  represented by the superposition of t he  f i r s t  three free-free 
simple beam modes. 
computed by using the  m a s s  and s t i f fnes s  properties f o r  a f l i g h t  time of 
t = 62 seconds 
times. The modes a re  normalized t o  unity a t  the gimbal s ta t ion,  t h a t  is, 
& ( O )  = 1.0 f o r  i = 1, 2, and 3. 
freedom representing the  fundamental modes of t he  f i r s t - s tage  liquid-oxygen and 
fue l  tanks, respectively. 
a f t e r  launch are  about 4.7 radians/sec . 

The mode shapes and frequencies shown i n  f igure 4 were 

and are indicat ive of the r e l a t ive  shapes occurring at other 

The analysis included two slosh degrees of 

The frequencies of t he  two slosh systems 62 seconds 

Aerodynamics.- Aerodynamic data  available f o r  the  example vehicle con- 
s i s t ed  of t o t a l  normal-force and pitching-moment coeff ic ient  CN,(M) and 

Ck(M) 
o r  drag coefficient CA(M). 
d i s t r ibu t ion  w a s  assumed i n  the  form shown i n  f igure 6 and the  parameters C 1  

and C2 determined so t h a t  the  assumed d is t r ibu t ion  produced the  same C N ~ ( M )  
and C e ( M )  f o r  a given Mach number. The afterbody lift w a s  approximated by 
an exponential variation; t he  forebody l i f t  w a s  assumed l inear .  A s  has been 
previously explained, it i s  expedient t o  assume an expl ic i t  Mach number time 
relat ionship so  t h a t  the  integrations associated with the  quasi-steady coeffi- 
c ients  may be computed externally.  
shown i n  f igure  5 .  

as presented i n  figure 5 .  Shown a lso  i n  t h i s  f igure i s  the ax ia l  force 
For i l l u s t r a t i v e  purposes a normal aerodynamic l i f t  

The assumed Mach number time var ia t ion i s  

Control system.- The control system and gimbaled engine equations f o r  the  
example launch vehfcle have been previously discussed. The vehicle, however, 
w a s  flown without angle-of-attack feedback (p2 = 0).  Ascent of the-vehicle  was 



autopilot  controlled, r i s ing  ver t ica l ly  f o r  t h e  f irst  15 seconds of f l i g h t  and 
then executing a slow pitch-over maneuver. The p i tch  program approximates 
a no-wind, zero- l i f t  t ra jec tory  and i s  i l l u s t r a t e d  i n  f igure 7. 

Wind profile.-  A measured wind p ro f i l e  obtained by the  smoke-trail method 
(ref .m w a s  used as input. 
wind velocity of approximately 300 feet per second. The wind w a s  assumed t o  
increase l i nea r ly  from zero velocity at launch t o  t h e  first smoke-trail data  
point and t o  decrease l inear ly  from t h e  last data  point t o  zero velocity at 
60,000 feet. The wind input w a s  defined i n  a table t h a t  specified Vw a t  
approximately every 82 f e e t  (25 meters) of a l t i tude .  
Vw w a s  used as a tailwind. 

The prof i le  i s  shown i n  f igure 8 and has a m a x i m u m  

It should be noted t h a t  

Launch-Vehicle Response and Bending Loads 

The example launch vehicle w a s  flown through the  measured wind p ro f i l e  
i l l u s t r a t ed  i n  f igure 8. 
wind loads i s  presented i n  t h i s  section. 

A br ief  summary of t he  resul t ing response and induced 

Trajectory.- Mach number and dynamic pressure t i m e  h i s to r i e s  for t h e  wind 
disturbed ascent t ra jec tory  a re  shown i n  f igure g(a). The vehicle experiences a 
maximum dynamic pressure of 790 lb/sq f t  about 82 seconds a f t e r  l i f t - o f f .  The 
Mach number a t  t h i s  time i s  approximately 2.0. Because the  quasi-steady aerody- 
namic coeff ic ients  were computed externally and related t o  time by means of  an 
expected or  assumed Mach number t i m e  relationship, it i s  of i n t e re s t  t o  check 
t h e  va l id i ty  of t h i s  computational simplification. A comparison of t he  computed 
and assumed Mach numbers i s  a l so  shown i n  f igure g ( a ) .  
that ,  due t o  atmospheric winds, t h e  assumed Mach number d i f f e r s  s l igh t ly  from 
t h a t  actual ly  experienced by the  vehicle. 
and the  command a t t i t ude  Be. As a result of t he  wind, a m a x i "  deviation of 
about 3 O  occurs about 77.5 seconds after launch. 
angle of a t tack a + % and a l t i t ude  t i m e  h i s tor ies .  The vehicle experiences a 
peak angle of a t tack of about -6.70 26 seconds a f t e r  l i f t - o f f  due t o  the  pitch- 
over maneuver. Jus t  p r i o r  t o  penetrating the  large shear layer, t he  magnitude of 
t h e  angle of a t tack  has decreased t o  approximately -4 .2O (t = 71.5 seconds}. 
After  passing through t h e  wind shear reversal  occurring near an a l t i t ude  of 
36,000 feet ( f ig .  8}, the  angle of a t tack fur ther  increases t o  3 . 8 O  (t = 77.5 sec- 
onds) which represents t h e  maximum posi t ive excursion. 
pressure and angle of attack, t h a t  is, 
measure of loads, has a m a x i m u m  value of approximately 2,950°-lb/sq f t  about 
77.5 seconds after launch. 

The f igure indicates 

Figure g(b) compares the  a t t i t ude  0 

Also shown i s  t h e  resul t ing 

The product of dynamic 
q(u + a ~ ) ,  which i s  sometimes used as a 

Gimbaled engine, bending mode, and slosh responses.- The response of t he  
gimbaled engine i s  presented i n  f igure 10. A maximum posi t ive angular dis- 
placement of about 3.90 w a s  required. The engine kick a t  t = 15 seconds which 
starts the  vehicle i n to  t h e  pi tch program ( f ig .  7) i s  apparent as well as the  
swiveling between 45 and 70 seconds required f o r  control while maneuvering 
through the  smaller wind shear reversals between 10,000 and 30,000 feet. 
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Passage of t he  launch vehicle through t h e  l a rge r  shear reversal  near 36,000 f e e t  
required a negative engine rotat ion (gimbal angle) of about -5.8'. 

The response of the  three bending modes i s  i l l u s t r a t e d  i n  f igure 11, which 
shows the  time h is tor ies  of the  associated generalized coordinates f o r  
i = 1, 2, and 3. Oscil lations at the  modal frequencies a r e  negligible, due t o  
re la t ive ly  smooth wind prof i le .  
gimbal the  resu l t s  of t h i s  f igure indicate a maximum first  mode deflection a t  
the  gimbal point (x = 0)  of about 0.13 foot. 
would be about 5 times la rger  i n  the  f irst  mode as i s  apparent from t h e  infor- 

mation presented i n  figure 4. The actual  deflection u(x, t )  of any point on 
the  s t ruc tura l  center l i n e  can be obtained by superposition of t he  three modes. 
For example, i f  equation (1) and the  resu l t s  of f igure 4 are used, the t o t a l  
nose deflection occurring a t  a f l i g h t  t i m e  of 62 seconds can be computed as 
follows : 

q i ( t )  

Since the  modes are normalized t o  unity a t  the  

The nose deflection a t  x = L 
1 
2 

u(x=L,t=62) = 3.4(-0.048) + (-10.~)(0.10)(10)-2 + 6.1(-0.18)(10)-2 = -0.184 ft 

The responses of the  two slosh masses are  i l l u s t r a t e d  i n  figure 12. It 
should be noted t h a t  t he  subscripts 1 and 2 r e fe r  t o  the  first-stage f u e l  
and liquid-oxygen tanks, respectively. Maximum displacements of the  spring m a s s  
systems are l e s s  than f0.42 foot.  
associated with these degrees of freedom, the  responses a re  osci l la tory.  

Because of t h e  s m a l l  mounts of damping 

Bending moments.- The bending moments produced a t  f ive  longitudinal sta- 
t ions along the s t ruc tura l  center l i n e  w e r e  computed. The t i m e  h i s tor ies  are 
presented i n  f igure 13. Peak negative bending moments occur about 71.5 seconds 
a f t e r  launch. Maximum posi t ive bending moments occur a f e w  seconds l a t e r  a t  
approximately 77.5 seconds as a result of t he  vehicle recovering from the  large 
wind shear reversal  near an a l t i t ude  of 36,000 feet .  
of about 0.59 x lo6 f t - l b  w a s  produced at  s ta t ion  Xb,2 = 33.32 feet. A d i s t r i -  
bution of the  bending moments f o r  t h i s  time (t  = 77.5 seconds), cross-plotted 
from f igure 13, i s  presented i n  f igure 14 .  

A maximum bending moment 

CONCLUDING REMARKS 

An analyt ical  procedure has been developed f o r  computing the  motions and 
bending moments experienced by a f lex ib le  launch vehicle during ascent through 
atmospheric winds. The method i s  par t icular ly  sui table  f o r  use with detai led 
wind inputs, such as those obtained by smoke-trail observations, which describe 
the  combined amplitude, shear, and gust character is t ics  of t he  atmospheric wind 
environment . 

The nonlinear d i f f e ren t i a l  equations of motions, which have time-dependent 
A s  coefficients, were programed f o r  solution on a high-speed d i g i t a l  computer. 

... I - - . . .. . ..... -.--. . . . ..- __- ,... ...-,.,, . ,. . 



an i l l u s t r a t i v e  example, the  motions and bending moments were computed f o r  
a typ ica l  launch vehicle ascending through a smoke-trail wind veloci ty  prof i le .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 30, 1964. 



APPENDIX A 

SLENDER-BODY MOMENTUM AEFiODYI'IAMICS 

I n  accordance with momentum theory (as discussed i n  ref. 19) the  l i f t  per 
un i t  length 2(x,t) developed on a slender body is  given by the  expression 

where S(x) i s  the  loca l  cross-sectional area of revolution and w ( x , t )  i s  
t he  local time-dependent downwash. 
i l l u s t r a t e d  i n  f i g .  1) the  downwash may be writ ten as follows (neglecting 

From coordinate system considerations (as 
keg): 

where Vm,w i s  the veloci ty  of  the launch vehicle re la t ive  t o  the wind. Using 
t h i s  expression for downwash, the  l i f t  per u n i t  length may be expanded t o  the 
form: 

The resultant normal force, pitching moment, and j t h  generalized force may be 
obtained by integrating t h e  d is t r ibu t ion  over t h e  length i n  accordance with t h e  
following three equations: 



If penetration e f fec ts  a re  neglected, by defining 
CI+ = %(xcg,t), t he  coeff ic ients  required i n  equations ( 3 6 ) ,  (37), and (38) 

Vm,w = Vm,w(xcg,t) and 

may be determined as follows: 



1 
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APPENDIX B 

QUASI-STEADY AEBODYNAMI CS 

Mach number e f fec ts  can be accounted f o r  through the use of a quasi-steady 
type of aerodynamic analysis (ref. 1). 
dynamic force per  un i t  length may be wri t ten as: 

With t h i s  approach, the  noma1 aero- 

where cn,(x,M) i s  the  slope of the loca l  normal-force coefficient and q i s  

the  dynamic pressure. For the  present analysis Cnu(X,M) i s  assumed independ- 

ent of angle of a t tack and i s  thus only a function of the  running coordinate x 
and the  Mach number M. The downwash w(x,t) i s  given by equation ( A 2 )  and 
V,,, 
normal-force d is t r ibu t ion  (eq. (Bl)) may be expanded t o  t h e  following form: 

i s  given by equation (41). After subst i tut ing f o r  t h e  downwash, t h e  

where a = 8 - 7 .  

The normal force, pitching moment, and generalized aerodynamic force f o r  
the  j t h  bending mode may be obtained from equation (A4). 
a re  neglected, as w a s  done previously i n  appendix A, the  quasi-steady aero- 
dynamic coefficients required i n  equations ( 3 6 ) ,  ( 3 7 ) ,  and (38) may be estab- 
l ished as follows: 

If penetration e f fec ts  

Cn,& = 0 

Cn,g = 0 
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cm,4 = - - qso k L ( X  - Xcg)2  Cnu(X,M) dx 
Vm, w 

C j , &  = 0 

cj,B’ = 0 
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APPENDIX c 

PROPULSIVE FORCES AND PROPEILAD" FLOW EFFECTS 

Equations f o r  t he  propulsive forces and moments, including propellant flow 
effects,  a re  derived i n  t h i s  appendix. 
a s ingle  rocket-engine th rus t  chamber which swivels t o  produce the  necessary 
control forces. 
engines serves only t o  complicate the  analysis and i s  unnecessary since the  
forces and moments associated w i t h  the  latter may be obtained by specializing 
the  r e su l t s  of the  former. 
not previously defined, a r e  used: 

The launch vehicle i s  assumed t o  have 

The more general case involving both gimbaled and nongimbaled 

I n  the  subsequent development the following symbols, 

cross-sectional area of th rus t  chamber exi t ,  sq f t  

perpendicular distance from gimbal point t o  nozzle e x i t  face, f t  

rate of mass flow through a section a t  coordinate x, s," bcjtl a?,, lb-sec 
f t  

propulsive moment about gimbal exerted on engine thrus t  chamber, 
f t - l b  

pressure at  thrust chamber ex i t  face  (exhaust condition), lb/sq f t  

average velocity at w h i c h  propellant mass i s  being t ransferred across 
a section located a t  coordinate x, f t / s e c  

average velocity a t  which mass (exhaust gases) i s  being t ransferred 
across a section i n  thrus t  chamber at  coordinate 7 

velocity of exhaust gases at e x i t  from th rus t  chamber, v(v=d,t), 
f t / sec  

V, = V ( O , t )  f t l s e c  

W r a t e  at  which t o t a l  mass of launch vehicle i s  changing, negative for 

systems losing mass, K( 0, t ), lb-sec 
f t  

wx ( x, t 1, wy ( x, t 1 x- and y-components of d i s t r ibu ted  loading exerted on a 
launch-vehicle s t ructure  by in te rna l  propellant flow, 
l b / f t  

we,x( 7,' 1, We,y( 7,' x- and y-components of d i s t r ibu ted  loading exerted on 
gimbaled thrus t  chamber by flow of exhaust gases, 
l b / f t  
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A(q-d) de l ta  function 

h dummy variable f o r  x, f t  

The force (per unit  length) exerted on a launch-vehicle s t ructure  by the 
loca l  propellant mass t ransfer  may be obtained from the  information available 
i n  reference 7. 
siderations and are easily modified t o  include a gimbaled thrus t  chamber (engine) 
and a modal representation f o r  s t ruc tu ra l  deformations. 
is  made and the results transformed from an i n e r t i a l  (space-fixed) reference 
frame, as used i n  reference 7, t o  t h e  rotat ing body frame used herein (fig.  1) 
the  x- and y-components of t h e  distributed loading are found t o  be as follows: 

The results presented therein a re  obtained from momentum con- 

When such an extension 

where V ( x , t )  
l an t  m a s s  i s  being t ransferred across the  section at coordinate x.  It should 
be noted that V(x,t) 
i s  posit ive i n  the  airect ion of flow - t h a t  is, toward the  or igin x = 0. The 
quantity 
ferred across a section located at coordinate x and has the following 
def ini t ion : 

is  the average (over the  cross section) velocity at which propel- 

is  tangent t o  the deformed s t ruc tu ra l  center l i n e  and 

K(x,t) represents the  r a t e  a t  which propellant m a s s  i s  being trans- 

It is  apparent from equation ( C 3 )  t ha t  K ( L , t )  = 0 whereas K(0,t) = w; t ha t  
is, the  rate of m a s s  flow at the  gimbal point ( i n to  the thrus t  chamber) i s  w 
and represents the rate at which the t o t a l  mass of the  launch vehicle is  
changing. It should be noted that  w is  a negative quantity. 

Along the  longitudinal axis of the gimbaled engine nozzle the  mass-flow 
rate is constant and equals w. The velocity V(q,t) ,  however, undergoes a 
pronounced change as the  flow (exhaust gases) is  expanded t o  the  ex i t  condition 
at  q = d. In  
the  difference 
gases at  exit  
delta function 

addition, there  is  a force exerted on 
between atmospheric pressure po and 
pe. The pressure force -A(pe - po) 
A(q-d), where it is assumed t h a t  the  

the thrus t  chamber due t o  
the  pressure of the exhaust 
is included by means of a 
exhaust pressure is  
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uniformly dis t r ibuted over the ex i t  face. Hence, t he  x- and y-components of the 
loading per uni t  length along the  nozzle m a y  be determined i n  a similar ma,nner 
and are given by the  following two equations: 

It should be noted tha t  
tudinal  axis of the  thrus t  chamber as measured from the  gimbal point with a 
posit ive sense i n  the  direction of flow, tha t  is, i n  the  same direct ion as 

7 represents a running coordinate along the  longi- 

V(q,t). 

With the  results of equations (C1) t o  (C5), it i s  possible t o  compute the  
resul t ing forces and moments produced by the  flowing propellants. 
x-component F, of the  t o t a l  force exerted on the  launch vehicle by v i r tue  of 
the  propellant flow may be obtained by integrating the  x-component of the  dis- 
t r ibu ted  loading. Therefore, 

The 

When the  resu l t s  of equations (Cl), ( C 3 ) ,  and (Ck) are  substi tuted in to  equa- 
t i on  ( ~ 6 )  and the integration performed, the  following equation resul ts :  

I n  a similar manner the  y-component Fy i s  given by the  equation 

With the  a id  of equations (C2), ( C 3 ) ,  and ( C 5 ) ,  equation ( C 8 )  reduces t o  the 
following form: 
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If the dis t r ibuted loadings (eqs. (Cl), (C2), (Ch), and (C5)) are  m u l t i -  
p l ied by the proper weighting functions and integrated, the  propulsive pitching 
moment Mp, j t h  generalized force QjJp ,  and gimbaled engine moment Mg may be 

obtained. For example, the moment Mp produced about the center of gravity by 
the  propellant flow i s  given by the  following expression: 

(c10 ) 

When the necessary subst i tut ions are made and the  integrations performed, 
equation (C10) reduces t o  the following form: 

The generalized force associated with the  j t h  bending mode due t o  the  
flowing propellants i s  obtained i n  a similar manner and i s  given by the  following 
equation : 
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where 

Finally,  the moment about the  gimbal exerted on the  swiveling engine by 
the exhaust gases is given by 

which integrates  t o  



APPENDIX D 

BENDING MOMENTS 

The bending moment acting a t  any point along the  s t ructure  of a booster 
vehicle is  determined by the  loads summation method as discussed i n  reference 8. 
Application of the method requires finding the  lateral load per  u n i t  length and 
integrating t o  f ind  the resul tant  bending moment. 
i en t ly  divided in to  four types: i ne r t i a l ,  slosh, aerodynamic, and gravity.  

The loading rtiay be conven- 

The i n e r t i a l  loading requires knowledge of the  acceleration vector of a 
point on the  vehicle s t ruc tura l  center l i ne .  This vector is  obtained by dif-  
ferent ia t ing the  velocity vector Vp, as 

where the unit  vector i? is  formed from 
expands t o  the  following form: 

given by equation (4) .  Thus, 

qi: x 7p) 

- 3 9  the  cross product i x j .  Equation (Dl) 

Only the y-component of the  acceleration vector 
i n e r t i a l  loading (less slosh) 
t h i s  quantity i s  given by the following equation: 

?p contributes t o  the lateral  

ZI. In accordance with d'Alembert ' s  principle,  

The slosh masses a l so  contributed t o  the i n e r t i a l  loading. However, inclusion 
of the  slosh contributions i n  the bending-moment expression is  simplified i f  the  
spring and viscous damping forces a re  considered. 
slosh m a s s  produces a concentrated force 

Using t h i s  approach, each 
% at i ts  attachment point, which is  

The gravity loading per un i t  length is  given by the following equation: 

zg(x,t) = -m(x,t)g cos e (D5 1 
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The dis t r ibuted aerodynamic loading 2(x,t) 
o r  (Bl). 

i s  given by e i the r  equation (A3)  

The bending moment produced at  any s t a t ion  located by the  coordinate 
i s  determined by integrating t h e  t o t a l  lateral  loading i n  t h e  fol- = Xb,n 

lowing manner: 

where U ( q - X b j n )  i s  the uni t  s tep function and has the following def ini t ion:  

(xk < Xb,n) 

(xk Xb,n) 
} ( D 7 )  

U(xk-xb,n) = 

U(xk-xb,n) = 
; I  

By performing the  indicate 
neglecting the 62 term, I he bending-moment equation reduces t o  the  form 

I 

substi tutions i n  equation (I%), integrating, and 

*b,n 

Momentum aerodynamic coefficients:  
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SUMMARY OF EQUATIONS 

This appendix summarizes the basic equations. Coefficients are defined 
in appendixes A, B, and D. 

Axial tnotion equation: 

Lakeral motion equation: 

(Equation continued on next page) 
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Gimbal engine equations : 

I 

Propellant slosh equation: 
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Control system equations : 

Bending-moment equations : 

'(xk-%,n) = ( xk Xb,n) 

U(xk-xb,n) = (xk Xb,n) 

Miscellaneous equations : 

V s i n  y -1 w 
a, = sin ( Vm,, ) 
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Figure 3.- Gimbaled engine block diagram. 
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